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a b s t r a c t

We present an investigation of the kinematic properties of 3D homogeneous flow defined by complex
eigenvalues. We demonstrate, using simple algebraic analysis, that the clear threshold between
pulsating and non-pulsating fields, fixed for Wn> 1 and valid for planar flow, is not easily defined in
a 3D flow system. In 3D flows, one of the three eigenvalues is always real and gives rise to an
exponential flow, coexisting with a pulsating pattern defined by the other two complex conjugate
eigenvalues. Due to this mathematical property, the existence of a stable or pulsating pattern depends
strongly on the relative dominance of the real eigenvector with respect to the complex ones. As
a consequence, the pattern of behaviour is not simply imposed by the kinematic vorticity numbers, but
is also determined by both the amount of strain accumulation and the extrusion component. It is also
shown that complex flow can occur locally within shear zones and can sustain some predictable
hyperbolic strain paths. These results are applied to the kinematic analysis of some non-dilational and
dilational monoclinic and triclinic flows. Some geological implications of this investigation, and the
limit of applying these algebraic and kinematic results to real rocks fabric analysis, are briefly
discussed.

Crown Copyright � 2009 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The geological structures can be classified and approximated
analytically using basic critical flow patterns (Ramberg, 1974;
Ottino, 1989; Passchier, 1997). In homogeneous and steady state
flows, the kinematics of structures can be described in terms of
either velocity or displacement gradient. The application of these
concepts to deformable rocks enables us to study the progressive
deformation and related deformation path patterns in 2D or
simple 3D systems. In detail, steady state flow patterns are criti-
cally dependent on flow parameters like the relative magnitude of
vorticity number (Wn), the dilatancy parameter (An) and the strain
rate (Passchier and Trouw, 2005). Ramberg (1974) and McKenzie
(1979) examined the possible vorticity values and strain rate ratios
which can create several pulsating and non-pulsating strain paths
and showed that for 2D deformation, the threshold limit between
the oscillatory and non-oscillatory field is defined by the eigen-
values of the strain rate matrix. If the eigenvalues are all real
).

009 Published by Elsevier Ltd. All
numbers, the eigenflows give rise to exponential deformation
paths and the eigenvectors behave as attractors or as repulsors
(Ruelle, 1981; Passchier, 1997). If the eigenvalues are purely
imaginary, the eigenvectors do not behave neither as attractors or
repulsors (Ramberg, 1974; Weijermars, 1993). The analytical and
experimental works of Weijermars (1991, 1993, 1998) and Wei-
jermars and Poliakov (1993) provide a complete description of
such pulsating strain in 2D flow systems. Some examples of 3D
pulsating path and strain history were first described analytically
by Weijermars (1997). Introducing the concept of fabric attractor,
Passchier (1997) described geometrically a flow path spectrum
that is connected with all non-isochoric homogenous monoclinic
flow types controlled by complex eigenvalues. 3D triclinic geom-
etries in shear zones have been suggested and analytically studied
(Jiang and Williams, 1998; Lin et al., 1998), but the possible pattern
defined by complex eigenvalues was not discussed so far. This
study re-examine previous results that describe the planar flow as
a dynamical system and introduce a complete algebraic analysis of
general 3D flow focusing in domains where complex eigenvalues
can occur. The kinematic meaning of the complex eigenvalues and
their relevance in describing geological structures is also
discussed.
rights reserved.
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2. Analytical description

2.1. Flow description

According to Ramberg (1974) and McKenzie (1979) a 3D flow
can be described, with respect to a geographic reference system, by
the velocity tensor (or flow matrix) Lij. The Lij could be decomposed
into a symmetric stretching tensor or strain rate matrix Dij and an
antisymmetric vorticity tensor W0ij as follow:

Lij ¼ 1=2
�
Lij þ Lji

�
þ 1=2

�
Lij � Lji

�
¼ Dij þW 0

ij (1)

In a steady state and homogeneous flow, the vorticity tensor
W0ij describes the angular velocity of an orthogonal pair of
material lines in the deformation medium with respect to
a geographical reference system. Eigenvectors of the Dij tensor
represent the maximum, medium and minimum Instantaneous
Streching Axes (ISA) of the flow pattern. The flow is considered to
be ‘‘homogeneous’’ if Lij is space-independent and ‘‘steady’’ if it is
time independent. As pointed out by Jiang (1994) heterogeneous
flow is likely non-steady. In this paper we limit our analysis to
steady and homogeneous flows. In a steady flow, ISA and the
eigenvectors of Lij represent directions that do not change orien-
tation during the progressive deformation. The component of
vorticity varies according to the framework choosen as reference
system. Generally, if we choose an ‘‘external’’ (or geographical)
rotating coordinate system parallel to a certain marker (e.g. the
boundary walls of a shear zone) an additional rotation component
can be introduced. Thus, as extensively demonstrated by Astarita
(1979) and Means et al. (1980), with respect to an inertial
geographical reference system, W0ij should be further split into
two components (Passchier, 1988):

W 0
ij ¼ Wij þ eijkUk (2)

and Eq. (1) can be rewritten as:

Lij ¼ Dij þWij þ eijkUk (3)

where eijkUk represents the spin component, i.e. the rotation rate of
the ISA with respect to the external reference system, while Wij

describes the ‘‘internal’’ rotation rate of material lines parallel to the
ISA at any instant with respect to the ISA. If the reference system
fixes to the ISA in the flowing body, the spinning component
proportional to U vanishes.

In order to formulate the flow kinematics in more quantitative
terms, some definitions are needed:

(a) the Istantaneous Stretching Axes (ISA) are defined as the
orientation of the eigenvectors of the strain rate matrix Dij

(defined in Eq. (1)). With respect to the ISA, the strain rate
matrix Dij is diagonal with a and b (and c in three dimensions)
as diagonal elements.

(b) The kinematic vorticity number W0
n, introduced by Truesdell

(1954), is defined as the ratio between the vortex velocity v
(from the antisymmetric part of Wjk) and the trace (¼ TrDij) of
the stretching tensor Dij:

W 0
n ¼

jvjffiffiffiffiffiffiffiffiffiffiffiffiffi
2TrDij

q (3a)
where vi h 1/2 eijkWjk

McKenzie (1979) and Means et al. (1980) first used the intuitive
concept of the kinematic vorticity number Wn to show that the
hyperbolic flow paths belong to the range 0<Wn< 1 (Fig. 1a–d),
while the pulsating (or oscillating) flow paths belong to the
complementary field where 1<Wn<N (Fig. 1e–h). Since then,
a complete description of patterns of planar homogenous flow
(hyperbolic and elliptical) as a function of flow parameters has been
given by various authors (e.g. De Paor, 1983; Passchier, 1988;
Weijermars, 1991, 1993; Weijermars and Poliakov, 1993).

In case of 3D kinematics, some additional parameters should
also be defined to describe in a complete way the flow path.

(a) If a, b and c are the eigenvalues of the Dij matrix, with
a> b> c, and if the vorticity vector is parallel to the eigen-
vector corresponding to c, a flow parameter called stretching
rate s¼ (a� b)/2 can be defined (note that this strain param-
eter can be used in 2D flow matrix as well, and is always
positive).

(b) Based on the above hypothesis, the sectional dilatancy number
An can also be defined as:

An ¼
aþb
2s

(3b)
This quantity represents the amount of dilatancy during the
deformation history. Following the arguments of Jiang (1994),
Passchier (1997) and Iacopini et al. (2007), An should be calculated
along a section orthogonal to the vorticity vector. If the flow is
a non-dilatant then An¼ 0.

(c) The elongation (or extrusion) parameter, which are defined as

Tn ¼
_3i

2s
ðbeing i ¼ 1;3Þ (3c)
and represents the elongation rate along one of the three ISA axes.
2.2. 2D flow

The planar flow pattern can be described in two dimensions (see
Table 1 for the definition of all mathematical symbols) by the
equation:�

_x
_y

�
¼ L

�
x
y

�
h

�
_31 _g12
_g21 _32

��
x
y

�
(4a)

where _3 and _g represent the pure and simple shear rates of defor-
mation, respectively.

In this case, the kinematic vorticity number becomes

W 0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _g12 � _g21Þ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�

_32
1 þ _32

2

�
þ ð _g12 þ _g21Þ

2
r (4b)

which, for a non-spinning planar flow, in the ISA system, simplifies to:

Wn ¼
_g12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�

_32
1 þ _32

1

�
þ ð _g12Þ

2
r (4c)

For a steady flow, the solutions x(t), y(t) of Eq. (4a) can be written
in terms of the eigenvalues l1 and l2 of the velocity gradient tensor
Lij, and are of the type:

�
xðtÞ
yðtÞ

�
¼ C1

�
v1x
v1y

�
el1t þ C2

�
v2x
v2y

�
el2t (5)

where Ci are the integration constants, depending upon the initial
conditions (e.g Ramberg, 1974) and ðv1x=v1yÞ and ðv2x=v2yÞ are the



Fig. 1. Flow patterns showing hyperbolic (Wn< 1) and pulsating (Wn> 1) behaviour for constant volume flow systems at different vorticity number values: (a) pure shear Wn¼ 0;
(b) general shear Wn¼ 0.5; (c) general shear Wn¼ 0.7; (d) simple shear Wn¼ 1; (e) pulsating flow with ‘‘ghostvectors’’ related to pure complex eigenvalues (1<Wn<N); (f), (g),
and (h) pulsating flows with ‘‘ghostvectors’’ related to complex number eigenvalues; (i), (j) spinning flow with Wn¼N.
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eigenvectors corresponding to the two eigenvalues l1 and l2

defined as:

ðl1; l2Þ ¼
	�

_31 þ _32
�2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_31 � _32Þ2þ4 _g12 _g21

q 
�
2

h

	
Tr
�
Lij
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
TrðLijÞ

�2�4det
�
Lij
�q 
�

2 ð6Þ

Note that the Eq. (5) describes the displacement path.
From Eq. (6), two fields of existence should be expected: one
defined by the condition DhðTrLijÞ2 � 4detLij > 0 with real eigen-
values and one defined by the condition D< 0, with complex
conjugate eigenvalues (Fig. 2). Previous studies have been concen-
trated on flows with real eigenvalues which produce the well-
known patterns of pure shear, simple shear and general shear flow
with eigenvectors that can act as attractors or repulsors (Fig. 1a–d).
This work focuses on complex flow patterns, and therefore discusses
only the second field defined by the condition D< 0 (Fig. 2).



Table 1
Symbols and mathematical definitions.

Lij: strain rate matrix or velocity matrix
Dij¼ 1/2(Lijþ Lji)
ISA: Instantaneous Stretching Axes; eigenvector of stretching matrix Dij

TrLij: trace of the matrix Lij defined as
Pn

1 aii

det Lij: determinant of matrix Lij

l1, l2, l3¼ eigenvalues of the strain rate matrix
Re(l2), Re(l3): real parts of complex eigenvalues
vij¼ column eigenvector of the strain rate matrix
3ij: stretching rate
gij: simple shear rate
a, b, c: stretching rate in ISA reference system
s¼ aþ b/2: mean stretching rate parameter in ISA reference system
<> matrix product operator
a, b, g: orientation angle of the vorticity vector respect to the ISA
Wn: vorticity number
An: dilatancy number
Tn: extrusion number
p, q, r: vorticity parameters
a, b: imaginary angle coefficient
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In an ISA reference system, the velocity gradient matrix defined
by Eq. (1) can be rewritten more efficiently in terms of the three
flow parameters s, An and Wn (Table 1) as:

Lij ¼
�

Ans sþ sWn
s� sWn Ans

�
(7)

The eigenvalue relation (Eq. (6)) now becomes:

ðl1; l2Þ ¼ ðsAnÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
�

1�W2
n

�r
(8)

From Eq. (8), it follows that an isochoric flow can have complex
eigenvalues only if Wn> 1. In this case the eigenvalues have the
form l1¼ aþ ib and l2¼ a� ib, where

a ¼ sAnhTr
�
Lij
�
=2;

b ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

n � 1
q

h

ffiffiffiffiffiffiffi
�D
p

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4detLij �

�
TrLij

�2
q

2
:

Fig. 2. Diagram of Trace (TrLij) versus determinant (detLij) showing 2D pulsat
Consequently, the Eq. (5) that describes the particle path can be
rewritten as:�

xðtÞ
yðtÞ

�
¼ C1

�
v1x
v1y

�
eðaþibÞt þ C2

�
v2x
v2y

�
eða�ibÞt (9)

It should be noted that the eigenvectors associated to the
complex eigenvalues (Eq. (8)), do not behave as asymptotes or
apophyses of the flow (Iacopini et al., 2007). They control the flow
geometry but represent directions that can be crossed by the
particles in a flow path (Fig. 1e and f). Therefore, as previously
suggested by Iacopini et al. (2007), they could be referred to as
‘‘ghostvectors’’ or ‘‘ghost’’ eigenvectors.

Using the Euler formula to express eibt in terms of the trigono-
metric functions, we have

eða�ibÞt ¼ eat ½cosðbtÞ � isinðbtÞ� (10)

and therefore Eq. (9) can be rewritten as

�
xðtÞ
yðtÞ

�
¼C1

 
v1x

v1y

!
eat ½cosðbtÞ þ sinðbtÞ�

þ C2

 
v2x

v2y

!
eat ½cosðbtÞ � isinðbtÞ�

which allow us to classify the flow path as follows:

(a) TrLij> 0 (dilatant flow An> 0). In this case the real part of
the complex eigenvalues is positive and all material points
for t /N tend to move out from the critical point (Figs. 1e, f
and 2). The critical point behaves as an ‘‘unstable’’ point and
the instability is induced by the positive real part sAn of the
eigenvalues. The resulting pattern represents an asymptotic,
unstable and exponentially growing spiral whose geometry
depends on the relative value of Wn and of the two complex
eigenvalues (Fig. 2; see also Passchier, 1997).

(b) TrLij< 0 (negative dilation flow An< 0). In this case the real part
of the complex eigenvalues is negative and the solution is
controlled by the exponential of the negative real part of the
eigenvalues. This results to a movement toward the critical
ing flow patterns for different dilatancy (An) and vorticity (Wn) numbers.
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point which is the origin of an asymptotic stable spiral (Figs. 1g
and 2). Also, in this case the flow geometry is controlled by the
Wn values and the two eigenvalues.

(c) TrLij¼ 0 (constant area, An¼ 0). In this case the complex
eigenvalues are purely imaginary (there is no real part) and
the flow is characterized by closed and cyclical patterns like
circles or ellipses (Fig. 2), with frequency and amplitude
depending upon the Wn values. For t /N, the relative
deformation path never merges toward a critical point as in
the real cases (Fig. 2).

Summarizing, in 2D, the parameter which discriminates
between real and complex L eigenvalues is Wn. If Wn < 1 and the
eigenvalues are both real with l1 > l2, and if An þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

n

q
> 0

then the asymptotic solution (Eq. (5)) tends to the attractor direc-
tion defined by the eigenvector associated tol1. For complex
conjugate eigenvalues ðWn > 1Þ and only if TrðLijÞ < 0, the solution
is an exponentially decreasing spiral tending to the origin. Other-
wise, if TrðLijÞ > 0, an exponentially growing spiral exists but
without attractor spiral direction.
2.3. General 3D flow system

To expand the previous 2D analysis to a 3D flow system, we fix
the reference system to the ISA, ideally moving the external refer-
ence system to the internal ISA system. In this reference system the
spinning matrix defines exactly the non-coaxial component and
their eigenvalues are zero. Hereafter the coordinate system x, y, z
will be considered with respect to the ISA. According to Iacopini
et al. (2007), a general flow matrix Lij, written with respect to the
ISA can be simplified as:

Lij ¼

0
@ a p �q
�p b r
q r c

1
A (12a)

where p, q, r are the off-diagonal coefficient of the velocity tensor
(function of the angular velocity and/or shear angular values) and a,
b, c represent the stretching rate components. This general tensor
could define either monoclinic or triclinic flow. The integration of
the time evolution equation:

0
@ _x

_y
_z

1
A ¼ L

0
@ x

y
z

1
A (12b)

gives rise to the following displacement path equation:0
@xðtÞ

yðtÞ
zðtÞ

1
A¼ C1

0
@v1x

v1y
v1z

1
Ael1tþC2

0
@v2x

v2y
v2z

1
Ael2tþC3

0
@v3x

v3y
v3z

1
Ael3t (13)

where li are the eigenvalues of Lij, vi are the corresponding eigen-
vectors while Ci, similarly to 2D case, represents the integration
constants depending on the initial conditions. In this case, the
characteristic polynomial equation associated to the matrix L,
defining its eigenvalues li is:

x3�Tr
�
Lij
�
x2þ

�
p2þq2þr2þabþacþbc

�
x�det

�
Lij
�
¼ 0 (14)

The solutions of this third degree equation have been
extensively discussed and described by Iacopini et al. (2007) and
based on the so-called ‘‘Cardano method’’ (independently
discovered by Scipione dal Ferro (1465–1526) and Niccolo
Fontana Tartaglia (1499–1557); see Guilbeau, 1930 or Kline, 1972
for a historical review). For the purpose of this analysis we re-
define the main parameters using the strain rate matrix
parameters in Eq. (12a):

u ¼ p2 þ q2 þ r2 þ abþ acþ bc (15)

v ¼
�
TrLij

�
(16)

k ¼ �DetLij (17)

j ¼ u� v2=3 (18)

h ¼ kþ ðuvÞ=3� 2v3=27 (19)

Defining also the following quantities:

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h
2
�

ffiffiffiffi
D
p3

r
(20a)

n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h
2
þ

ffiffiffiffi
D
p3

r
(20b)

and being also

D ¼ h2=4þ j3=27 (20c)

then, the three solutions of Eq. (14) can be expressed as follow:

l1 ¼ m0 þ n0 þ
��

TrLij
��

3
�

(21a)

l2 ¼ m0

 
�1þ i

ffiffiffi
3
p

2

!
þ n0

 
�1� i

ffiffiffi
3
p

2

!
þ

TrLij

3
(21b)

or rewritten as m� exp(i f)þ n� exp(�if)� ((TrLij)/3 with f¼ 2p/
3 and

l3 ¼ m0

 
�1�

�
i
ffiffiffi
3
p �

2

!
þ n0

 
�1þ i

ffiffiffi
3
p

2

!
þ

TrLij

3
(21c)

or as m0� exp(� i f)þ n0� exp(if)� ((TrLij)/3, with f¼ 2p/3.
All possible eigenvalues solutions in Eqs. (21a), (21b) and

(21c) depend on the quadratic roots in Eq. (20c). However, as
discussed in Iacopini et al. (2007) in order to obtain and
investigate the imaginary or complex solutions of the Eq. (14)
we should impose D> 0. In fact, if D> 0, then m0 and n0 are
both real (and m0 s n0).

In this case, since e2ip=3 ¼ e�4ip=3 ¼ �1þ i
ffiffiffi
3
p

=2; e�2ip=3 ¼
e4ip=3 ¼ �1þ i

ffiffiffi
3
p

=2
we have

l1 ¼ m0 þ n0 þ k; l2 ¼ �
1
2
ðm0 þ n0Þ þ i

ffiffiffi
3
p

2
ðm0� n0Þ þ k;

l3 ¼ �
1
2
ðm0 þ n0Þ � i

ffiffiffi
3
p

2
ðm0 � n0Þ þ k ð21dÞ

i.e. one root is real but the two others are complex conjugates.
In the next paragraphs we discuss the eigenvalues behaviour for
t/N, as well as the main related flow path expected in case of
D> 0.



Fig. 3. Flow patterns in 3D flow system with principal dominating eigenvalue being
real. (a) Extruding (repelling) spiral saddle where the solution curves move out toward
infinity along the z-direction; (b) Attracting spiral saddle where the solution curves
flatten out into the xy-plane; (c) spiral sink; (d) spiral source. For each flow pattern the
relative values of the real eigenvalue (l1) and of the real parts (Re(l2,l3)) of the
complex eigenvalues are also showed.
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2.4. Phenomenology of the complex number solutions

Following Eq. (13), displacement path could now be expressed as:0
@ x

y
z

1
A ¼ C1

0
@ v1x

v1y
v1z

1
Aeðl1Þt þ C2

0
@ v2x

v2y
v2z

1
Aeða�ibÞt þ C3

0
@ v3x

v3y
v3z

1
AeðaþibÞt

(22a)

or rewritten in a Eulerian form as:0
@x

y
z

1
A¼C1

0
@v1x

v1y
v1z

1
Aeðl1ÞtþC2

0
@v2x

v2y
v2z

1
AeðatÞðcosðbtÞ�sinðbtÞÞ

þC3

0
@v3x

v3y
v3z

1
AeðbtÞðcosðbtÞþsinðbtÞÞ (22b)

where from the relations (21b) and (21c):

a ¼ �1
2
ðm0 þ n0Þ � TrLij

b ¼
ffiffiffi
3
p

2
ðm0 � n0Þ

(22c)

The Eqs. (22a) and (22b) define all possible flow solutions of the
system and as they represent a linear system it is possible to predict
their asymptotic behaviour and stability for t approaching to
infinite or in other words for a long-standing strain accumulation.
Eq. (22b) clearly indicates that the nature of the system is
controlled by the three eigenvalues defined in Eqs. (21a)–(21c).
From the theory of linear systems in 3D, it is well known that the
real eigenvalue (l1) corresponds to a straight-line solution in phase
space while the complex eigenvalues (l2, l3), as in 2D case,
correspond to spiralling. However, the flow pattern, as time
increases to infinity, depends on l1 and the real parts of the
complex eigenvalues (Re(l2), Re(l3)). These real parts of eigen-
values (Eqs. (21a)–(21c)) are by definition:

l1 ¼ m0 þ n0 þ
�
TrLij=3

�
; (23a)

Reðl2Þ ¼ Reðl3Þ ¼ �1=2ðm0 þ n0Þ þ
�
TrLij=3

�
(23b)

Adopting the classical classification of 3D linear systems, a first
rapid analysis about the effect of eigenvalues on the flow pattern
could be done examining the signs of the l1, Re(l2) and Re(l3). As it
is schematically illustrated in Fig. 3, four main flow patterns can be
distinguished: (a) extruding (or repelling) spiral saddle, (b)
attracting spiral saddle, (c) spiral sink and (d) spiral source. All
these flow patterns, results from the combination of a straight line
of solutions (z-direction; Fig. 3) that tend either toward (if l1<0) or
away (if l1>0) from the origin and of a plane of solutions
(xy-plane; Fig. 3) that spiral either toward (if Re(l2, l2)< 0) or away
(if Re(l2,l2)> 0) from the origin as time increases.

The above-mentioned patterns reveal that, in the field of
complex solutions, there are substantial differences between 2D
and 3D model. They also show that the asymptotic behaviour of the
3D flow is determined by the real eigenvalue l1 with the corre-
sponding eigenvector direction (z-direction) to act as an attractor
(Fig. 3a and c), or as a repulsor (Fig. 3b and d). However, this
generalized classification of flow patterns does not clearly specify
the dependence between the eigenvalues and the main flow
parameters as well as cannot easily describes all possible flow
varieties expected in 3D domain.

As shown by the Eqs. (20a) and (20b) the behaviour of these
flow patterns could be further investigated by studying the
parameter h which has a clear relation to the stretching component
of the strain rate matrix. By using the relations (15)–(19), the
parameter h (Eq. (19)) could be re-defined as

hh
2a3

27
� ab

3
þ c

Moreover, it turns out that the sign of the parameter h is opposite
that of the quantity (m0þ n0) included in Eqs. (23a) and (23b). In
fact, from the definitions of h (Eq. (19)), m0 and n0 (Eqs. (20a) and
(20b)), we have that if h< 0 then n0> 0 and n0 ¼ jn0j > jm0j,
i.e.ðm0 þ n0Þ > 0, whereas if h> 0 then m0< 0 and
�m0 ¼ jm0j > jn0j, i.e. ðm0 þ n0Þ < 0. Thus, the parameter h could
be easily used and coupled to the TrLij to separate further classes of
flow within the above-mentioned regimes. From the above
consideration and the Eqs. (22b), (23a) and (23b), the following
cases, which are also summarized in Table 2, can be distinguished:

(1) h< 0 and (m0þ n0)> 0
(a) TrLij> 0 (dilatant flow). In this case l1 is always positive

and greater than Re(l2) and Re(l3), which can have positive
or negative values depending if TrLij is, respectively,
greater or smaller than (m0þ n0). In the first case, where
(TrLij/3)<�(m0þ n0), we have l1>0 and Re(l2, l3)< 0 and
thus a extruding eigenflow within an unstable spiral (or
corkscrew) pattern is expected (Fig. 3a). In the second case,
where (TrLij/3)>�(m0þ n0), we have l1>0 and Re(l2,
l3)> 0, which implies that the flow path have a third
repelling eigenflow component within an unstable spiral
pattern (spiral source in Fig. 3d).

(b) TrLij< 0 (collapsing flow). In this situation l1 can be either
positive or negative, while Re(l2) and Re(l3) are always
negative acting as implosing directions. If l1>0 (and Re(l2,
l3)< 0) the flow solution will diverge, as time increases,
forming an extruding spiral saddle (Fig. 3a). If l1<0 (and



Table 2
Classification of 3D flow types with one real (l1) and two complex conjugate (l2, l3) eigenvalues.
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Re(l2, l3)< 0) the asymptotic behaviour will again be
determined by the l1 since, as results from Eqs. (23a) and
(23b), it is always greater than Re(l2, l3). This means that
the flow solution is a spiral exponentially converging to the
origin forming a sinking attractor (Fig. 3c).

(c) TrLij¼ 0 (isochoric flow). In this case l1 is always positive
(being equivalent to m0þ n0) while Re(l2) and Re(l3) are
always negative. In the special case where det(Lij)> 0 we
have that l1l2l3> 0 being (from relation (22b))
l2l3 ¼ jl2j2 ¼ jl3j2 > 0. The figure is again a repelling
spiral saddle controlled by the main eigenvector.

The above analysis, for h< 0, implies that during the progressive
deformation, as time increases, the principal real eigenvalue l1

becomes progressively dominant and overcomes the complex
eigenvalues giving rise to stable or unstable asymptotic spiralling.
Moreover, asymptotic spiral sink and source patterns can only
occur in collapsing and dilatant flow, respectively (Table 2).
Therefore, these patterns could be considered as end-member
cases. An extruding spiral saddle, in turn, can occur in all flow types
(Table 2). In this pattern, it seems that the flow geometry is initially
controlled by the ‘‘ghost’’ eigenvectors that defines a closed or
spiral pattern but after some strain accumulation it is the real
eigenvector that definitively attract the material lines from the
initial cyclical pattern.

(2) h> 0, (m0þ n0)< 0
(a) TrLij> 0 (dilatant flow). l1 can be positive or negative,

whereas Re(l2) and Re(l3) are always positive. Moreover,
from Eqs. (23a) and (23b), it seems that either the real
eigenvalue l1 is positive or negative, it is always smaller
than Re(l2) and Re(l3). This implies that, similarly to 2D
case, are the two complex eigenvalues that determine the
asymptotic behaviour of the flow solution. Thus, if l1<0
(when (TrLij/3) <jm0 þ n0j) then the flow solution is an
attracting spiral saddle that asymptotically flatten out in
a planar surface controlled, for a long time accumulation, by
the ‘‘ghost’’ eigenvectors and the related complexes eigen-
values l2, l3 (Fig. 3b). If l1>0 (when (TrLij/3)> jm0 þ n0j)
then the resulting flow solution is a spiral source with also
limited asymptotic behaviour (Table 2).
(b) TrLij< 0 (collapsing flow). In this case l1 is always negative
while Re(l2) and Re(l3) can have positive or negative values.
As in previous case, it is demonstrated that that
l1< Re(l2)¼ Re(l3). Therefore, the expected flow pattern is
either an attracting spiral saddle (if Re(l2, l3)> 0) or a spiral
sink (if Re(l2, l3)> 0) but no asymptotic direction of the
flow do really exists since the flow patterns are controlled
by the imaginary complex eigenvectors (Table 2).

(c) TrLij¼ 0 (isochoric flow). In this case l1 is negative and
Re(l2, l3) positive. The flow pattern is characterized by an
attracting spiral saddle with limited asymptotic behaviour.

The above analysis, for h< 0, implies that for large t, the
asymptotic behaviour of the time dependent solution is controlled
by the complex eigenvalues, so that now the two ‘‘ghost’’ eigen-
vectors determine the flow pattern. This field of existence resem-
bles the pulsating strain fields described by McKenzie (1979) and
Weijermars (1991) for 2D, being only weakly perturbated by the
eigenvector related to the real eigenvalue. Moreover, as in previ-
ously analysed condition (h> 0), the spiral sink and source can only
occur in collapsing and dilatant flows, respectively. Attracting spiral
saddle is possible to all flow types (Table 2).

(3) h¼ 0
From Eqs. (18) and (19) it rise that m0þ n0 is also zero and as
a consequence the solution of the general characteristic
equation becomes strongly simplified and defined by three
eigenvalues having the same real part. In particular, if TrLij¼ 0
the eigenvalues are totally complex and the pattern is closed
such as an ellipse (Fig. 1g and h) or a circle (Fig. 1i and j).

3. Application to simple extruding – contracting 3D example

An interesting case to apply the previous consideration is the
monoclinic flow system. The nature of this system is generally well-
known and its pattern is rather widespread within naturally
occurring shear zones (Ramberg, 1974; Means et al., 1980; Tikoff
and Fossen, 1993; Soto, 1997; Passchier, 1997, 1998; Passchier and
Trouw, 2005). This fact makes feasible an intuitive kinematics
interpretation of the parameters h and D introduced in the previous
theoretical description and helps to investigate more complex 3D
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situations. Specifically, this application focuses, in detail, to some
laterally shortening or elongating monoclinic flow systems (Fig. 4),
as the kinematic behaviour of the ‘‘ghost’’ eigenvectors within such
flow systems remains imperfectly understood.

With respect to an ISA reference system, the monoclinic flow
can be described by the following flow tensor (Passchier, 1997):

L ¼

0
@2sTn 0 0

0 Ans sþ sWn
0 s� sWn Ans

1
A (24)

where Wn, An, Tn and s are the flow parameters described in Section 2.1.
In line with Eq. (14), the characteristic equation of the flow

matrix (Eq. (24)) has the form:

x3 � 2sðAn þ TnÞx2 � s2
�

1� A2
n � 4AnTn �W2

n

�
� 2s3

�
TnW2

n þ TnA2
n � Tn

�
¼ 0 ð25Þ
Fig. 4. Simple sketches of some possible shear zones. The reference system is fixed to
boundary wall that behave rigidly during the deformation. (a) Isochoric shear zone; (b)
extruding shear zone; (c) dilatant shear zone; (d) non-isochoric dilatant shear zones.
and, by making use of the above algebra, we conclude that

h ¼ 2
27

s3ðAn � 2TnÞ
h
ðAn � 2TnÞ2þ9

�
W2

n � 1
�i

(26a)

D ¼ 1
27

s6
�

W2
n � 1

�h
ðAn � 2TnÞ2þ

�
W2

n � 1
�i

(26b)

Clearly, the condition D > 0 requires that W2
n > 1 and then the

sign of h is the same as the sign of the quantity An� 2Tn. As a conse-
quence, if An< 2Tn then an asymptotic repelling spiral controlled by
the real eigenvalue (l1¼2sTn> 0) and the corresponding eigenvector,
is expected (Fig. 3a). This condition corresponds to a strongly
extruding flow. In the case where An> 2Tn, the two complex conju-
gate roots (Re(l2, l3)¼ sAn> 0) define the flow behaviour which is
now an unstable spiral. This situation corresponds to dilatant shear
zones. The situationwith An¼Tn¼ 0 (h¼ 0; Eq. (26a)) as shown by the
matrix L in Eq. (24) corresponds instead to a specific isochoric flow.
3.1. Testing some flow end member

Eqs. (26a) and (26b) show that both h and D are, in general,
complicated functions of the kinematic flow parameters, and in order
to understand their behaviour it is necessary to calculate and inves-
tigate them graphically by fixing some parameters. Below, we analyse,
for some end-member flow conditions, the behaviour of D and h in
function of varying stretching and vorticity values. The corresponding
graphics (Figs. 5 and 6) represent ‘‘surfaces’’ of h and D values at
different vorticity and stretching flow values. This numerical inves-
tigation is also a sort of test of the theoretical constrain presented
in Section 2. The calculations and the plot of analytical solutions have
been performed using Mathematica 5.1 (Wolfram research TM).

(1) Parameter D.

The following flow conditions were investigated to examine the
variation of parameter D in function of different values of extrusion
(Tn), dilatancy (An) and vorticity (Wn) numbers:

(a) Tn¼ 0, An¼ 0, 0<Wn< 2 (Fig. 5a) that represents an isochoric
flow;

(b) Tn¼ 0, An¼ 1, 0<Wn< 2 (Fig. 5b) that represents a non-iso-
choric dilatant flow;

(c) Tn¼ 1, An¼ 0, 0<Wn< 2 (Fig. 5c) that represents a non-iso-
choric extruding flow;

(d) Tn¼ 1, An¼ 1, 0<Wn< 2 (Fig. 5d) that represents a non-iso-
choric flow.

The case (a) is well known in literature (Ramberg, 1974) and
corresponds to an isochoric flow system shown in Fig. 4(a), with
h¼ 0. As a consequence, this case represents a good test for the
proposed analytical results. The first eigenvalue of L is always zero
and the whole system behaves like a 2D flow system implying that
the flow path is fully determined by the other two eigenvalues.
These eigenvalues ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � s2W2

n

q
Þ are strongly depended on the

values of both Wn and the stretching parameter (s). If Wn> 1 then
the eigenvalues are complex, otherwise they are real (Ramberg,
1974). As illustrated in Fig. 5a, the parameter D is always negative
for Wn< 1, having only real eigenvalues and positive for Wn> 1
holding only complex eigenvalues. Therefore, the result fully vali-
dates the proposed analytical calculation.

The case (b) corresponds to a flow that elongates parallel to the
shear zones boundaries (Fig. 4b) having An> 2Tn. The eigenvalues
have a similar form to the previous case (a); being the first eigen-
value zero. For Wn< 1 the parameter D is always negative but



Fig. 5. Graphics indicating the values of the D function at different values of the flow parameters An (dilatancy number), Tn (extrusion number) and Wn (vorticity number) and at
different strain rate s. (a) An¼ 0, Tn¼ 0, 0<Wn< 2; (b) An¼ 1, Tn¼ 0, 0<Wn< 2; (c) Tn¼ 1, An¼ 0, 0<Wn< 2; (d) Tn¼ 1, An¼�1, 0<Wn< 2.
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behaves differently with respect to the case (a) because the field of
existence is more negative. This implies that the flow has no
complex eigenvalues (Fig. 5b). For Wn> 1 the field of existence of
the eigenvalues is also similar to the case (a) and for strain rate s> 1
and Wn> 1 the D is positive indicating a field of existence with
complex eigenvalues (Fig. 5b).

The case (c) represents the most interesting flow condition with
An< 2Tn. It corresponds to a flow that extrudes orthogonally with
respect to the boundary walls (Fig. 4c). In this case the eigenvalues
have the general form shown in Eqs. (23a) and (23b). As a conse-
quence, the flow behaves as a true 3D flow system and for Wn> 1
the parameter D is clearly positive (Fig. 5c); being the eigenvalues
a mix of real and complex numbers, if the first eigenvalue is not
zero. For Wn< 1, the parameter D has values that are negative or
zero (Fig. 5c).

The case (d) is a non-isochoric extruding flow also with An< 2Tn.
The extrusion occurs orthogonal to the shear direction while the
dilatancy is expressed by the expansion of the material orthogonal
to the extruding direction (Fig. 4d). D is zero for very low strain rate
(lower than 0.5) and becomes negative for Wn< 1 (Fig. 5d). For
Wn> 1, D becomes positive indicating the existence of both real and
complex eigenvalues (Fig. 5d).
(2) Parameter h.

Different flow conditions were also investigated to examine the
behaviour of parameter h. As we are interested on flow having
‘‘ghostvectors’’ we limited our analysis to monoclinic flows with
Wn> 1:

(a) Tn¼ 0, An¼ 1, 1<Wn< 2 (Fig. 6a) that represent a dilatant flow;
(b) Tn¼ 1, An¼ 0, 1<Wn< 2 (Fig. 6b) that represent an extruding

flow;
(c) Tn¼ 2, An¼ 0, 1<Wn< 2 (Fig. 6c) that represent a strongly

extruding flow;
(d) Tn¼ 1, An¼�1, 1<Wn< 2 (Fig. 6d) that represent an extruding

but isochoric flow.

In case (a), where Tn¼ 0 and Wn> 1, the parameter h always
receives positive values which increase with increasing Wn (Fig. 6a).
This finding is fully expected as we are into the condition An> 2Tn.
Under the same flow condition (Fig. 5b), the parameter D is also
positive. Following the proposed analytical results, it seems that the
flow pattern is controlled by the real part of the complex eigen-
values which consequently means that the flow geometry is



Fig. 6. Graphic showing the values of parameter h at different values of extrusion parameter Tn and for vorticity number Wn> 1. (a) Tn¼ 0, An¼ 1; (b) An¼ 0, Tn¼ 1, (c) An¼ 0, Tn¼ 2;
(d) An¼�1, Tn¼ 1.

Fig. 7. Graphic showing the values of parameter h at different extrusion flow
parameters (from Tn¼ 1 to Tn¼ 4) and for vorticity number Wn> 1 and strain rate
values s¼ 1.
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determined by the complex eigenvectors. This result is similar to
that obtained for an isochoric planar flow with Wn> 1 and suggests
that the dilatancy parameter seem not able to induce any sensitive
effect on the flow behaviour. In this case we should expect a similar
pulsating strain as the isochoric planar flow.

In case (b), where Tn¼ 1, Wn> 1 and s¼ 1 (Fig. 6b), the param-
eter h is negative and An< 2Tn. Under the identical condition
(An< 2Tn; Fig. 5c), the D is always positive having both real and
‘‘ghost’’ eigenvector. Moreover, the diagram in Fig. 6b clearly shows
that the greatest is the strain rate, the more the parameter h
becomes negative in the domain of complex eigenvalues; as
expected from the proposed analytical consideration. This implies
that the real eigenvalue is the largest one and it is parallel to the
extruding direction controlling the flow pattern.

In case (c), where Tn¼ 2 and Wn> 1, the parameter h is always
negative (Fig. 6c) and again An< 2Tn. This case reinforces the
consideration done in case (b) showing that also in this condition,
the greatest real eigenvalue is dominant over the real parts of the
complex eigenvalues.

In case (d), h is always negative (Fig. 6d) and D positive (Fig. 5d)
suggesting that also in a non-constant volume condition the
extrusion direction controls the flow pattern. These data suggest
again that the extrusion parameter overcomes the vorticity and
dilatancy parameters.
Finally, to understand how the extruding component affects the
values of the parameter h we examined flows that have different
extrusion components (Tn> 0) but are not laterally expanding
(An¼ 0). As shown in Fig. 7, for a fixed strain rate value s¼ 1 and
Wn> 1, the parameters h obtain always negative values which dras-
tically decrease as the extrusion component increases from Tn¼ 1–4.
This finding indicates that the eigenvectors in an isochoric (dilatant or
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not) flow are mainly controlled by the Wn, while in the case of an
extruding (isochoric and not) flow they are controlled by the extru-
sion parameter Tn. However, in an extruding body, after a large
amount of strain accumulation, even if the flow bears both real and
‘‘ghostvectors’’, it is mainlycontrolled by the principal real eigenvalue.
From Eq. (26a), it is clear that the algebraic parameter h represents
a meaningful flow parameter, function of s, Wn and Tn. Moreover, the
parameters h is essentially related to the extrusion parameter Tn for
extruding flows with An< 2Tn. In conclusion, the above analysis (Figs.
5 and 6) demonstrates that in a monoclinic flow:

(a) The parameter that controls the size of the real stable
domain at the expense of the complex one is the extrusion
parameter Tn.

(b) The real eigenvalue that are controlled by the extrusion
parameter Tn, having a dilatant component (An> 0), tend to
control the final flow pattern and, therefore the behaviour of
the system move from a transient pulsating strain to a more
asymptotical strain. A possible simplified evolution of a flow
pattern at different flow parameters is proposed in Fig. 8.
3.2. Some practical consequence on the flow behaviour

The analysis performed in previous sections concerning the
exponential behaviour of flow paths in a 3D imaginary system
showed that four types of 3D flow patterns are expected (Fig. 3).
Two of these types are characterized by similar pulsating pattern
with a third component behaving as a sink or a source (Fig. 3c and
d). The other two flow types (Fig 3a and b) represent distinct
patterns with respect to that described in classical pulsating flow.
Fig. 3a illustrates an extruding flow where the solution curves move
Fig. 8. Brief sketch showing how in the extruding transpressive model at varying vorticity
amount of strain accumulation.
out, from an initially pulsating flow path (controlled by the two
main complex eigenvectors), toward an asymptotic stretching
direction. As a result, for a long-standing strain accumulation this
flow type will be governed by a single linear attractor that pull and
stretch all material lines along it. An opposite flow pattern is
observed in Fig. 3b where initially the solution curves seems to be
controlled by the main real eigenvector and then rapidly flatten out
into a plane forming a pulsating pattern. Therefore, at least in a very
early stage of strain history, this flow type (Fig. 3b) would have an
asymptotic behaviour similar to that expected in patterns
controlled by real numbers. As a consequence, both flow patterns
are characterized by a transient situation where a pulsating
substituted by a non-pulsating flow pattern (extruding spiral
saddle; Fig. 3a) or vice versa (attracting spiral saddle; Fig. 3b). This
represents a first difference with respect to what is predicted by
the flow theory of 2D systems (Ramberg, 1974; McKenzie, 1979;
Weijermars, 1993). In conclusion, as shown by the analytical results
described in the previous paragraphs, within a general monoclinic
flow even if the appearance of imaginary or complex eigenvalues is
associated to a Wn> 1 and the main flow behaves as a spiral saddle,
it is possible to expect a rock fabric associated to such a complex
eigenflow. So the classical limit of Wn< 1 (McKenzie, 1979) is no
more a necessary condition for non-pulsating flow types.
4. Some considerations about complex flow pattern in
triclinic systems

Another context where pulsating and transient strain could be
registered by rocks are the triclinic flows. The triclinic flows
represent the most characteristic natural examples of general 3D
flow systems since the vorticity vector is not parallel to any ISA
number (from 0 to Wn> 1) the flow pattern could be expected to change after a large
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axes. Although, it is relatively easy to describe the possible classes
of a ‘‘real’’ triclinic pattern in a ISA system (see Czeck and Hudles-
ton, 2002; Jiang and Williams, 1998; Iacopini et al., 2007), the
representation of a triclinic flow system controlled by complex
eigenvalues needs more complicated numerical code. In this case,
the initial full flow matrix describing the flow pattern could of the
type:0
@ a wðcosðbÞÞ 0
�wðcosðbÞÞ b wðsinðbÞÞ

0 �wðsinðbÞÞ c

1
A (27)

Based on this flow matrix as well as on the general Eq. (21b)
describing the particle path, it is clear that the 3D geometry of
a complex pattern is strongly controlled by both the real eigen-
vector and the two ‘‘ghostvectors’’. If the analysis of a triclinic flow
is referred to an ISA system then the three eigenvectors loose their
internal symmetry (monoclinic or orthorhombic), which is function
of the vorticity vector orientation defined by the angle b. This
implies that the new 3D flow deviates from this analysed in
previous sections (Figs. 3 and 9a, c) producing a more complicated
and asymmetric pattern (Fig. 9b and d). Moreover, in the case of
a triclinic flow the field of existence of the complex eigenflow is by
far more important and larger with respect to the monoclinic one.
As showed in Table 3, complex eigenvalues do not develop only for
Wn> 1 but also in some isochoric and extruding flows having
Fig. 9. Comparison between monoclinic and triclinic examples in ISA references system. (a
attractor. (c) Monoclinic and (d) triclinic attracting spiral saddle with the real eigenvector t
Wn< 1. Also, the critical Wn values needed to develop complex
eigenvectors can be lower than 1 at both dilatant and constant
volume triclinic flow systems (Table 3). In these cases the flows
show similar properties to that discussed in the previous paragraph
forming spirals (repelling or attracting) and closed patterns but
with the orientation of the third component to deviate slightly from
the orthogonality to the plane defined by the two ‘‘ghostvectors’’
(Fig. 9). These considerations clearly illustrate that the condition of
Wn> 1, proposed by Ramberg (1974) and McKenzie (1979) as
a required condition to obtain complex eigenvalues is valid only for
monoclinic and general 2D flows but not for triclinic flows.
5. Discussion

5.1. Kinematic interpretation of ghostvectors: fact or mathematical
artifact?

Quite enough numerical analyses and analogue experiments
(Weijermars, 1993, 1998; Weijermars and Poliakov, 1993) have been
performed to test the applicability of the pulsating flow models to
planar fabrics. In fact such flows have been rarely recognized in
naturally deformed rocks and this is mainly ascribed to the fact that
particular rheological properties of rock flow are required to
develop similar displacement path. For example, as showed by
Weijermars (1993), in 2D, to observe a pulsating rock fabric it is
) Monoclinic and (b) triclinic repelling spiral saddle with the real eigenvector to act as
o act as repulsor. Note the oblique disposition of the real eigenvector in triclinic cases.



Table 3
Threshold vorticity number separating complex from real triclinic flow types. a: the
orientation of the vorticity vector with respect to ISA; An: dilatancy parameter; Tn:
extrusion parameter; Wd: sectional vorticity number. Note that in several cases
(italic number) the threshold limit develops for vorticity values that are much lower
than 0.99.

An¼ 0 An¼ 0 An¼ 0 An¼ 0

Tn¼ 0 Tn¼ 0.5 Tn¼ 0.7 Tn¼ 1

a Wn a Wn a Wn a Wn

0.1 0.94 0.1 0.99 0.1 0.99 0.1 0.99
0.2 0.88 0.2 0.98 0.2 0.99 0.2 0.99
0.3 0.82 0.3 0.98 0.3 0.99 0.3 0.99
0.4 0.78 0.4 0.96 0.4 0.99 0.4 0.99

An¼ 0.5 An¼ 0.5 An¼ 0.5 An¼ 0.5

Tn¼ 0 Tn¼ 0.5 Tn¼ 0.7 Tn¼ 1

0.1 0.75 0.1 0.88 0.1 0.91 0.1 0.99
0.2 0.64 0.2 0.81 0.2 0.81 0.2 0.90
0.3 0.55 0.3 0.73 0.3 0.79 0.3 0.86
0.4 0.48 0.4 0.69 0.4 0.75 0.4 0.82
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necessary to have an homogeneous inclusion surrounded by an
homogeneous matrix where the far field stress imposes a compo-
nent of simple or super simple shear (Wn> 1) upon the inclusion. In
this system some of the pulsating flow patterns are mainly
controlled by the viscosity ratio of both the inclusion and the host
rock (Weijermars and Poliakov, 1993; Weijermars, 1998). Such
works in 2D systems imply that some of the proposed flow patterns
could eventually be non-realistic in nature. Therefore, a discrep-
ancy between kinematic models and naturally occurring rock
fabrics could also persist in the general case of a 3D flow. For
instance, the algebraic considerations presented here represent
advances in the mathematical and kinematic understanding of
some particular flow properties as well as in the description of
related incremental deformation path and finite strain pattern but
further investigations should be done to fix the mechanics validity
of 3D flow patterns to ductility deformed rocks. Despite the diffi-
culty to unravel a clear relationship between complex flow patterns
and geological structures, this work clearly adjust some general
Fig. 10. (a) Planar sections of a pulsating flow pattern. The ellipsoids indicate the progres
a possible 3D extruding flow path (with h< 0 and D> 0). The 3D ellipsoids indicate the prog
stable extruding pattern. Note the stronger stretching component induced by the majo
accumulation.
strain and flow properties which are often considered as estab-
lished behaviour but basically derived by 2D flow analysis (Ram-
berg, 1974; McKenzie, 1979; Passchier, 1988).

A first aspect arises from the theoretical approaches and results
presented here is that in a 3D flow system the existence of a stable
or pulsating pattern does not simply depend on vorticity number.
As indicated by the deformation path Eqs. (22a) and (22b), the
evolution of strain ellipse is quite complicate as two of the strain
axes rotate and pulsate. Depending on the flow type (extruding or
not), the third eigenvector could complicate the initial deformation
path. If the real eigenvalue is greater than the real parts of the two
complex eigenvalues then the eigenvector flow associated with the
real eigenvalue is expected to grow faster than the other two. As
pointed out in Section 3.2, a repelling spiral saddle is initially
characterized by a transient pulsating flow pattern which after
a large strain accumulation it evolves to a simpler pattern that is
geometrically controlled by a linear attractor defined by the real
eigenvector (Fig. 10). In this case, the final strain fabric is expected
to be similar to that observed in laterally stretching shear zones
having the vorticity vector parallel to the stretching lineation; XI

monoclinic shear zones in the sense of Passchier (1998). If the real
eigenvalue, in turn, is smaller than the real parts of the other two
complex eigenvalues, the flow pattern is similar to the 2D case with
complex eigenvectors (Ramberg, 1974). The real eigenvector will
weakly change or perturbate the initial pulsating flow pattern.
These properties reveal that the flow behaviour in addition to the
vorticity number depends also on:

(1) the relative dominance of the real eigenvector with respect to
the complex one;

(2) the strain rate and the total amount of strain accumulation
(t/N).

A further consequence of point 2 is that the concept of fabric
asymptotic stability is also strain and time dependent:

(a) If the strain accumulation is low, and the flow path is an
extruding spiral saddle (Fig. 3a) then it is possible that too
much time is needed to reach a linear extruding flow path
sive periodic strain accumulation history during the evolution of path. (b) Sketch of
ressive pulsating strain history from an initially transient pulsating pattern to the more
r real eigenvector overcoming the pulsating pattern during the progressive strain
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overcoming the pulsating fabric. The rocks will continue to
register a pulsating pattern. This condition is expected in high-
grade crystalline complexes where deformation does not
localize or where strain rate accumulation is not very high. If
the flow path is a spiral saddle that progressively flatten out
then the opposite behaviour should be expected. The rock will
register an initial long-term asymptotic flow with a stretching
shear zone fabric and will never properly evolves to a pulsating
flow. In this condition the rock will register a stable strain fabric
similar to a stretching monoclinic shear zone but with vorticity
number that are not necessarily lower than 1.

(b) If strain accumulation is very fast and there is enough strain
accumulation, the flow pattern could start with a transient
pulsating strain and then rapidly merge to a stable final flow
pattern (Fig. 10). In extruding contest, the initial strengthening-
weakening fabric development could prelude to a more simple
high strain stable condition. The possible flow type is clearly
shown in Fig. 10 where, after a certain amount of strain accu-
mulation, the pulsating finite strain ellipsoid is then realigned
along the main stretching direction. We suggest that this
transition from a simple pulsating pattern to an extruding flow
could simulate an overprinting of the type of flows (stretching
over super simple shear zones) that could be interpreted as an
effect of shear zones reactivation by a second tectonics phases.
In all other case the flow rocks will rapidly merge into
a pulsating flow pattern.

(c) A third aspect that the proposed analysis underlines is that in
case of triclinic flow, pulsating pattern could be defined as well
as for vorticity number Wn< 1. This implies that the well-
known condition of Wn> 1 (Ramberg, 1974; McKenzie, 1979),
crucial for defining pulsating strain within general 2D and 3D
monoclinic flows, does not represents a threshold value for
triclinic flows with complex eigenvalues.

6. Conclusions

Within a 3D homogeneous and steady state flow system, the
complex eigenvalues produce ‘‘ghostvectors’’ that cannot attract or
stabilize flow systems as the correspondent real ones. In order to
better define the 3D flow patterns characterized by ‘‘ghostvectors’’
we investigated the possible eigenvalue distribution, discussed the
nature of some related flow pattern and predicted some new
possible stable flow patterns with vorticity number Wn> 1. The
results of the present work convey three messages.

(a) According to the proposed kinematic calculation, a field with
all complex eigenvalues cannot exist because there is always
almost one real eigenvalues controlling the flow system. This
condition makes possible that after a certain amount of strain
accumulation if the real eigenvalues is dominant over the two
other complex conjugate eigenvalues then a non-pulsating and
stable fabric could be expected.

(b) The vorticity number Wn is not the only flow parameter that
control the final flow pattern. For high strain rate, 3D flow types
with complex eigenvalues do not produce necessary a final
bulk pulsating fabric but can sustain flows typical of monoclinic
shear zones. The pulsating displacement history could repre-
sent a transient behaviour of the material line that is not
necessarily recorded in deformed rocks. For same theoretical
reasons, at slow strain rate and vorticity number Wn> 1 it is
possible to observe shear zones with a stretching flow type
geometry.
(c) In case of triclinic flow the condition of Wn> 1 does not
represent a necessary condition to develop complex
eigenvalues.
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